11 research outputs found

    Genetic engineering of the polyamine biosynthetic pathway and somatic embryogenesis in carrot (Daucus carota L)

    Get PDF
    Ornithine decarboxylase (ODC), arginine decarboxylase (ADC), and S-adenosylmethionine decarboxylase (SAMDC) are three of the key regulatory enzymes involved in the biosynthesis of polyamines (putrescine, spermidine and spermine). To modulate the biosynthesis of putrescine, carrot (Daucus carota L.) cells were transformed with Agrobacterium tumefaciens strains containing 3\sp\prime-truncated mouse ornithine decarboxylase (ODC) cDNA under the control of a CaMV 35S promoter. Neomycin phosphotransferase gene linked with nopaline synthase promoter was used to select transformed cell lines on kanamycin. While the non-transformed cells contained no ODC, high levels of ODC activity were observed in the transformed cells. A significant increase in the cellular levels of putrescine in transgenic cells as compared to control cells was observed. Spermidine levels, however, remained unaffected. Not only did the transformed cells exhibit improved somatic embryogenesis in the auxin-free medium, they also regenerated embryos in the presence of inhibitory levels of 2,4-D. These cells acquired tolerance to α\alpha-difluoromethylarginine (a potent inhibitor of arginine decarboxylase) at concentrations that inhibit growth as well as embryogenesis in non-transformed carrot cells. Transformation of carrot cells with a human SAMDC cDNA lead to increased production of SAMDC enzyme. This increase in the biosynthesis of SAMDC translated to an increase in the cellular levels of spermidine and a decrease of putrescine. The transgenic cells were highly embryogenic and also tolerant to low levels of methylglyoxal bis(guanylhydrazone)

    Coexpression Network Analysis of miRNA-142 Overexpression in Neuronal Cells

    Get PDF
    MicroRNAs are small noncoding RNA molecules, which are differentially expressed in diverse biological processes and are also involved in the regulation of multiple genes. A number of sites in the 3′ untranslated regions (UTRs) of different mRNAs allow complimentary binding for a microRNA, leading to their posttranscriptional regulation. The miRNA-142 is one of the microRNAs overexpressed in neurons that is found to regulate SIRT1 and MAOA genes. Differential analysis of gene expression data, which is focused on identifying up- or downregulated genes, ignores many relationships between genes affected by miRNA-142 overexpression in a cell. Thus, we applied a correlation network model to identify the coexpressed genes and to study the impact of miRNA-142 overexpression on this network. Combining multiple sources of knowledge is useful to infer meaningful relationships in systems biology. We applied coexpression model on the data obtained from wild type and miR-142 overexpression neuronal cells and integrated miRNA seed sequence mapping information to identify genes greatly affected by this overexpression. Larger differences in the enriched networks revealed that the nervous system development related genes such as TEAD2, PLEKHA6, and POGLUT1 were greatly impacted due to miRNA-142 overexpression

    A base composition analysis of natural patterns for the preprocessing of metagenome sequences

    Get PDF
    Background: On the pretext that sequence reads and contigs often exhibit the same kinds of base usage that is also observed in the sequences from which they are derived, we offer a base composition analysis tool. Our tool uses these natural patterns to determine relatedness across sequence data. We introduce spectrum sets (sets of motifs) which are permutations of bacterial restriction sites and the base composition analysis framework to measure their proportional content in sequence data. We suggest that this framework will increase the efficiency during the pre-processing stages of metagenome sequencing and assembly projects. Results: Our method is able to differentiate organisms and their reads or contigs. The framework shows how to successfully determine the relatedness between these reads or contigs by comparison of base composition. In particular, we show that two types of organismal-sequence data are fundamentally different by analyzing their spectrum set motif proportions (coverage). By the application of one of the four possible spectrum sets, encompassing all known restriction sites, we provide the evidence to claim that each set has a different ability to differentiate sequence data. Furthermore, we show that the spectrum set selection having relevance to one organism, but not to the others of the data set, will greatly improve performance of sequence differentiation even if the fragment size of the read, contig or sequence is not lengthy. Conclusions: We show the proof of concept of our method by its application to ten trials of two or three freshly selected sequence fragments (reads and contigs) for each experiment across the six organisms of our set. Here we describe a novel and computationally effective pre-processing step for metagenome sequencing and assembly tasks. Furthermore, our base composition method has applications in phylogeny where it can be used to infer evolutionary distances between organisms based on the notion that related organisms often have much conserved code

    A Parallel Non-Alignment Based Approach to Efficient Sequence Comparison using Longest Common Subsequences

    Get PDF
    Biological sequence comparison programs have revolutionized the practice of biochemistry, and molecular and evolutionary biology. Pairwise comparison of genomic sequences is a popular method of choice for analyzing genetic sequence data. However the quality of results from most sequence comparison methods are significantly affected by small perturbations in the data and furthermore, there is a dearth of computational tools to compare sequences beyond a certain length. In this paper, we describe a parallel algorithm for comparing genetic sequences using an alignment free-method based on computing the Longest Common Subsequence (LCS) between genetic sequences. We validate the quality of our results by comparing the phylogenetic tress obtained from ClustalW and LCS. We also show through complexity analysis of the isoefficiency and by empirical measurement of the running time that our algorithm is very scalable

    A novel approach to identify shared fragments in drugs and natural products

    Get PDF
    Fragment-based approaches have now become an important component of the drug discovery process. At the same time, pharmaceutical chemists are more often turning to the natural world and its extremely large and diverse collection of natural compounds to discover new leads that can potentially be turned into drugs. In this study we introduce and discuss a computational pipeline to automatically extract statistically overrepresented chemical fragments in therapeutic classes, and search for similar fragments in a large database of natural products. By systematically identifying enriched fragments in therapeutic groups, we are able to extract and focus on few fragments that are likely to be active or structurally important as scaffolds. We show that several therapeutic classes (including antibacterial, antineoplastic, and drugs active on the cardiovascular system, among others) have enriched fragments that are also found in many natural compounds. Further, our method is able to detect fragments shared by a drug and a natural product even when the global similarity between the two molecules is generally low. A further development of this computational pipeline is to help predict putative therapeutic activities of natural compounds, and to help identify novel leads for drug discovery

    Multiplatform biomarker identification using a data-driven approach enables single-sample classification

    Get PDF
    Background: High-throughput gene expression profiles have allowed discovery of potential biomarkers enabling early diagnosis, prognosis and developing individualized treatment. However, it remains a challenge to identify a set of reliable and reproducible biomarkers across various gene expression platforms and laboratories for single sample diagnosis and prognosis. We address this need with our Data-Driven Reference (DDR) approach, which employs stably expressed housekeeping genes as references to eliminate platform-specific biases and non-biological variabilities. Results: Our method identifies biomarkers with “built-in” features, and these features can be interpreted consistently regardless of profiling technology, which enable classification of single-sample independent of platforms. Validation with RNA-seq data of blood platelets shows that DDR achieves the superior performance in classification of six different tumor types as well as molecular target statuses (such as MET or HER2-positive, and mutant KRAS, EGFR or PIK3CA) with smaller sets of biomarkers. We demonstrate on the three microarray datasets that our method is capable of identifying robust biomarkers for subgrouping medulloblastoma samples with data perturbation due to different microarray platforms. In addition to identifying the majority of subgroup-specific biomarkers in CodeSet of nanoString, some potential new biomarkers for subgrouping medulloblastoma were detected by our method. Conclusions: In this study, we present a simple, yet powerful data-driven method which contributes significantly to identification of robust cross-platform gene signature for disease classification of single-patient to facilitate precision medicine. In addition, our method provides a new strategy for transcriptome analysis

    Identifying modular function via edge annotation in gene correlation networks using Gene Ontology search

    Get PDF
    Correlation networks provide a powerful tool for analyzing large sets of biological information. This method of high-throughput data modeling has important implications in uncovering novel knowledge of cellular function. Previous studies on other types of network modeling (protein-protein interaction networks, metabolomes, etc.) have demonstrated the presence of relationships between network structures and organization of cellular function. Studies with correlation network further confirm the existence of such network structure and biological function relationship. However, correlation networks are typically noisy and the identified network structures, such as clusters, must be further investigated to verify actual cellular function. This is traditionally done using Gene Ontology enrichment of the genes in that cluster. In this study a novel method to identify common cluster functions in correlation networks is proposed, which uses annotations of edges as opposed to the traditional annotation of node analysis. The results obtained using proposed method reveals functional relationships in clusters not visible by the traditional approach

    A Novel Correlation Networks Approach for the Identification of Gene Targets

    Get PDF
    Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining coexpression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of “hub” nodes and semicliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data obtained from mice in three stages of life. We examine the characteristics of mouse networks, including correlation and node degree distributions. Further, we identify high degree nodes (“hubs”) within networks and define their essentiality. Finally, we associate Gene Ontology annotations to network structures to deduce relationships between structure and cellular functions

    MTAP: The Motif Tool Assessment Platform

    Get PDF
    Background: In recent years, substantial effort has been applied to de novo regulatory motif discovery. At this time, more than 150 software tools exist to detect regulatory binding sites given a set of genomic sequences. As the number of software packages increases, it becomes more important to identify the tools with the best performance characteristics for specific problem domains. Identifying the correct tool is difficult because of the great variability in motif detection software. Consequently, many labs spend considerable effort testing methods to find one that works well in their problem of interest. Results: In this work, we propose a method (MTAP) that substantially reduces the effort required to assess de novo regulatory motif discovery software. MTAP differs from previous attempts at regulatory motif assessment in that it automates motif discovery tool pipelines (something that traditionally required many manual steps), automatically constructs orthologous upstream sequences, and provides automated benchmarks for many popular tools. As a proof of concept, we have run benchmarks over human, mouse, fly, yeast, E. coli and B. subtilis. Conclusion: MTAP presents a new approach to the challenging problem of assessing regulatory motif discovery methods. The most current version of MTAP can be downloaded from http://biobase.ist.unomaha.edu

    Are providers prepared for genomic medicine: interpretation of Direct-to-Consumer genetic testing (DTC-GT) results and genetic self-efficacy by medical professionals

    Get PDF
    Background: Precision medicine is set to deliver a rich new data set of genomic information. However, the number of certified specialists in the United States is small, with only 4244 genetic counselors and 1302 clinical geneticists. We conducted a national survey of 264 medical professionals to evaluate how they interpret genetic test results, determine their confidence and self-efficacy of interpreting genetic test results with patients, and capture their opinions and experiences with direct-to-consumer genetic tests (DTC-GT). Methods: Participants were grouped into two categories, genetic specialists (genetic counselors and clinical geneticists) and medical providers (primary care, internists, physicians assistants, advanced nurse practitioners, etc.). The survey (full instrument can be found in the Additional file 1) presented three genetic test report scenarios for interpretation: a genetic risk for diabetes, genomic sequencing for symptoms report implicating a potential HMN7B: distal hereditary motor neuropathy VIIB diagnosis, and a statin-induced myopathy risk. Participants were also asked about their opinions on DTC-GT results and rank their own perceived level of preparedness to review genetic test results with patients. Results: The rates of correctly interpreting results were relatively high (74.4% for the providers compared to the specialist’s 83.4%) and age, prior genetic test consultation experience, and level of trust assigned to the reports were associated with higher correct interpretation rates. The self-selected efficacy and the level of preparedness to consult on a patient’s genetic results were higher for the specialists than the provider group. Conclusion: Specialists remain the best group to assist patients with DTC-GT, however, primary care providers may still provide accurate interpretation of test results when specialists are unavailable
    corecore